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Abstract
We present a method for assessing an atomic force microscope’s (AFM’s)
ability to reject externally applied vibrations. This method is demonstrated
on one commercial and two prototype AFMs. For optimally functioning
AFMs, we find that the response to externally applied vibrations obeys a
1/ω2 frequency dependence. This 1/ω2 frequency dependence can be
understood by modelling the mechanical system which connects the AFM
cantilever and the sample under test as a simple harmonic oscillator.
According to such a model, the resonant frequency of the mechanical system
which connects the AFM cantilever and the sample under test determines an
AFM’s ability to reject externally applied, low-frequency vibrations.

1. Introduction

The atomic force microscope (AFM) measures surface
topography, or force, by monitoring the deflection of a
micromachined cantilever beam (Binnig 1986, Albrecht and
Quate 1988). AFMs enable the measurement of sub-
nanometre features and sub-nanonewton forces (Weisenhorn
et al 1989, Rugar and Hansma 1990, Hoh et al 1992,
Ohnesorge and Binnig 1993, Lee et al 1994, Florin et al 1994,
Stowe et al 1997, Giessibl et al 2000).

Typically, the force resolution of an AFM using an optical
detection system (McClelland et al 1987, Meyer and Amer
1988, Alexander et al 1989) is limited by thermal cantilever
vibrations, or noise in the optical detection system (Sarid
1991, Smith 1995). When low-spring-constant cantilevers
are used, thermal cantilever vibrations dominate and optimal
force resolution is achieved (Viani et al 1999). Beyond this,
improvements in force resolution can be attained by either
lowering the temperature of the experiment or reducing the
cantilever’s coefficient of viscous damping (Stowe et al 1997,
Viani et al 1999).

The AFM is an important tool for studying biological
systems under near-physiological conditions (Drake et al 1989,
Hansma et al 1992, Mou et al 1996, Kasas et al 1997, Reif et al
1997, Oberhauser et al 1998, Merkel et al 1999, Oesterhelt
et al 2000, Viani et al 2000). Such studies must be carried
out in liquids and within a certain temperature range. Under
these restrictions, the most immediate way to improve force

resolution is to reduce the cantilever’s size and, therefore, its
coefficient of viscous damping (Walters et al 1996, Schaffer
et al 1997, Viani et al 1999).

As the cantilevers are made smaller, the optical, electronic,
and mechanical components of the AFM must improve so that
they do not limit the AFM’s overall noise performance.

Below we will examine how externally applied vibrations
couple to the AFM deflection signal, demonstrate a technique
to measure an AFM’s ability to reject externally applied
vibrations, discuss what design parameters make an AFM
resistant to externally applied vibrations and show that
our most recent small-cantilever AFM has mechanical
characteristics as good as or better than those seen in
commercial large-cantilever AFMs.

2. Simple theoretical model

The mechanical system connecting the AFM cantilever to
the sample under study can be treated as a simple harmonic
oscillator with a certain mass m, spring constant k and damping
factor b (Michely et al 2000). The equation of motion for this
system is

m
d2x

dt2
+ b

dx

dt
+ kx = m

d2v

dt2
(1)

where x is the tip–sample distance and v is the vibration applied
to the instrument. Taking v = Aveiωt and x = Axeiωt we can
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Figure 1. Theoretical vibration rejection ratio versus frequency.
Curves are shown for Q values of 0.1, 1 and 10. Vibration rejection
ratio is not sensitive to Q at low frequencies, but is sensitive to Q
near resonance.

find the complex vibration rejection ratio
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where ω0 = (k/m)1/2 and Q = b−1(km)1/2. The amplitude
of this quantity is the vibration rejection ratio which is plotted
in figure 1:
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Vibration rejection ratio can be measured by comparing
the applied vibration amplitude with the resulting cantilever
deflection amplitude while the cantilever is held in contact
with the sample surface. In the low-frequency limit (ω �
ω0) this equation has a particularly simple form (Rugar
and Hansma 1990)∣∣∣∣Av

Ax

∣∣∣∣ = ω2
0

ω2
+ ϑ

(ω0

ω

)
.

Therefore, if the resonant frequency of the mechanical system
connecting the cantilever to the sample is much lower than the
applied vibration frequency, we should expect the vibration
rejection ratio to have a 1/ω2 frequency dependence.

3. Measuring vibration rejection ratio

To measure the vibration rejection ratio of an AFM, it is
necessary to introduce a known vibration into the AFM
body and compare it with the amplitude of the cantilever
deflection signal, see figure 2. We introduced vibrations
into the AFM body by placing the entire instrument onto a
tactile sound transducer (Clark Synthesis). The tactile sound
transducer was driven with the output of an audio amplifier
(AudioSource), which in turn was driven with a sinusoidal
signal (Wavetek function generator). The amplitude of the
vibrations introduced into the AFM was measured with a
fibre optic position sensor (MTI Systems). The output of

Figure 2. This test setup allows us to determine the response of an
AFM to an externally applied vibration. A tactile sound transducer
is used to vibrate the AFM. These vibrations are characterized using
a fibre optic position sensor. By comparing the amplitude of the
applied vibrations to the amplitude of the AFM deflection signal it is
possible to determine an AFM’s ability to reject spurious signals,
such as room vibrations or sound.

Figure 3. The response of a prototype, small-cantilever AFM to an
applied vibration. The top trace is the applied vibration as measured
by a fibre optic position sensor. The lower trace is the resulting
deflection signal from the AFM.

the sensor was filtered and displayed on an oscilloscope for
measurement. The fibre optic position sensor was calibrated
before each set of data was taken. The deflection signal was
obtained from our commercial AFM electronics using a Signal
Access Module (all of the AFMs tested were designed to
be pin compatible with standard NanoScope SPM electronics
from Digital Instruments), amplified, and filtered before being
displayed on an oscilloscope for measurement.

The vibration rejection ratio of an instrument was then
measured using the following simple procedure: first the AFM
tip and sample (freshly cleaved mica epoxied to a steel disc)
were brought into contact within distilled water. Then a force
curve was acquired in order to calibrate the deflection signal.
The z-range of the force curve was set to zero, disabling the z-
feedback and leaving the tip in hard contact with the surface. At
this point, the frequency of the applied vibration was selected
and the amplitude of the applied vibration chosen to produce
a sinusoidal deflection signal of several nanometres. We used
applied vibration amplitudes of 20 nm to 20 µm. Finally, the
vibration amplitudes and deflection amplitudes were measured
on the oscilloscope, see figure 3. Both measurements were
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Figure 4. These plots show the vibration rejection ratios of three
different AFMs (vibration rejection ratio is the amplitude of the
applied vibration divided by the amplitude of the cantilever
deflection it produces). A large vibration rejection ratio implies that
the AFM is not sensitive to external noise sources such as room
vibrations or sound. (a) These data were taken on a commercial
AFM (MultiMode, Digital Instruments) with two different
commercial piezoelectric-tube scanners. (b) These data were taken
on a prototype, small-cantilever AFM before and after a design
modification. No change in the instrument’s vibration rejection ratio
was observed. (c) The performance of a more recent, prototype,
small-cantilever AFM using a commercial piezoelectric-tube
scanner and a custom scanner constructed from piezoelectric stacks.
If an AFM’s first mechanical resonance is well above the applied
vibration frequency, then the vibration rejection ratio should be high
and proportional to 1/ω2, where ω is the applied vibration frequency
(see text). The solid curves shown in (a) and (c) are curve fits to
equation (3) in the text. The vibration rejection ratio in (a) appears
to be proportional to 1/ω2 below 300 Hz. The vibration rejection
ratio in (b), however, shows a more complicated dependence on ω
suggesting that this AFM has one or more mechanical resonances
below 300 Hz. The vibration rejection ratios of the small-cantilever
AFM shown in (c) demonstrate a 1/ω2 dependence and the same or
better mechanical performance (as measured by vibration rejection
ratio) as that achieved in existing commercial AFMs.

converted into nanometres, and the vibration rejection ratio
was calculated by dividing the vibration amplitude by the
deflection amplitude. Several measurements were made at
different frequencies on each instrument.

4. Results

Three different AFMs were tested to determine their relative
vibration rejection performance.

Figure 4(a) shows the vibration rejection performance of
a commercial AFM (MultiMode, Digital Instruments) using a
silicon nitride cantilever in water. In one case a commercial
‘A’ piezoelectric-tube scanner (1 µm scan range) was used,
and in the other a commercial ‘E’ piezoelectric-tube scanner
(15 µm scan range). These two sets of data are similar, and
in both cases the vibration rejection ratios show the expected
1/ω2 dependence up to 300 Hz. The fit suggests that the first
resonance of the mechanical system connecting the cantilever
to the sample is about 800 Hz.

The data in figure 4(b) were taken on a prototype,
small-cantilever AFM. These data do not show a clear 1/ω2

dependence and the vibration rejection ratio values are lower
at all frequencies. Clearly, the simple harmonic oscillator
model does not adequately describe these data. As a result,
we modified the design of this AFM in the hope of increasing
its vibration rejection ratio, but no change in the vibration
rejection ratio was observed after the modification. We are
forced to conclude that our AFM prototype #5 is flawed.

The data in figure 4(c) show the vibration rejection ratios
measured on one of our latest prototype small-cantilever
AFMs. This instrument’s performance is much better than
that shown in figure 4(b). The fit in figure 4(c) suggests that
the first resonance of the mechanical system connecting the
cantilever to the sample is about 950 Hz. Data are shown
for this AFM using both a commercial E piezoelectric-tube
scanner and a custom piezoelectric-stack scanner (6 µm scan
size). The measured vibration rejection ratios are similar when
using either scanner, suggesting either that their mechanical
performance is not different or that we are not currently limited
by the design of the piezoelectric scanner used.

5. Discussion and conclusion

In optimally functioning AFMs, we observe the predicted
1/ω2 dependence in vibration rejection ratio. From our
idealized model we can expect that the term in the instrument’s
vibration rejection ratio proportional to 1/ω2 depends only
on the first resonant frequency of the mechanical system
connecting the cantilever to the sample. Damping, for
example, contributes a term proportional to 1/ω. The
observation of a 1/ω2 dependence supports our theory that the
first resonant frequency of the mechanical system connecting
the cantilever to the sample is of key importance to an AFM’s
ability to reject unwanted low-frequency noise sources, such
as room vibrations or sound.

It should be possible to extend the model of AFM vibration
rejection ratios presented here to AFMs whose performance is
not optimal. To do so, the mechanical system connecting the
cantilever to the sample could be modelled as two or more
coupled harmonic oscillators, instead of one. However, a

396



Assessing the quality of scanning probe microscope designs

more complicated analysis than that presented is frequently
unnecessary.

Given that increased damping does not improve an AFM’s
vibration rejection ratio at low frequency, the only clear way
to improve an AFM’s resistance to low-frequency vibrations
is, not surprisingly, to eliminate low-frequency resonances. In
order to achieve this, the AFM designer must either reduce the
mass of the AFM head, or increase its stiffness. Further, the
same logic applies to the design of any mechanical actuator or
probe for use on the nanometre scale.

Finally, we conclude that a plot of vibration rejection ratio
versus frequency is a simple but powerful tool to evaluate an
AFM design.
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